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Foreword

What makes a science book interesting, valuable, useful, and perhaps also worth
spending the money to own it? Well, in the case of this book I guess it starts with
its title which immediately attracts one’s attention. Next, the intrigued reader is
invited to inspect a Contents List which combines many familiar-sounding topics
and chapters along with completely new and unknown ones, raising our curiosity to
find out how these different topics are interrelated. Ultimately, of course, we realize
that it is the reading itself which will tell us whether we have found enough new
and interesting insights into this domain of the endless world of wonders in science,
which the authors call complex Hamiltonian dynamics. This brief foreword is thus
devoted to tell the reader that all the above conditions are satisfied for the book you
hold in your hands (or have downloaded to your electronic device).

To begin with, the short title tells those of you who do not know it already that
Hamiltonian dynamics is endlessly complex. Indeed, Hamiltonian models can be
formally used for almost any problem in nature, which includes hopelessly complex
systems as well. But complexity in Hamiltonian dynamics starts on much lower and
seemingly simpler levels. Just get into Chap. 2, where the authors demonstrate in a
pedagogical and very readable way some basic and well-known facts of chaos theory
for systems with a few degrees of freedom, illustrated by a number of illuminating
examples.

While reading the chapters that follow, the concept of the monograph, its title,
and the intentions of the authors quickly become clear. In a nutshell, what is
addressed here is the border between strongly chaotic and fully regular dynamical
systems. The authors use recent progress in the study of relaxation of nonequi-
librium states as a playground for applying novel tools. The models are carefully
chosen from a set of well-known half-century-old paradigms, which were invented
to address basic questions of statistical physics. The fact that a number of these
questions still remain unanswered hints at a kind of complexity that is present at
seemingly simple levels. It is indeed worth noting that the experienced authors take
special care to formulate a number of exercises, which makes this monograph a
combination of an introduction into the nonlinear dynamics of many degrees of
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freedom, a report on recent progress at the forefront of nonlinear science, and an
ideal textbook for students and teachers of advanced physics courses.

An interesting attempt to describe and distinguish order from chaos in Hamil-
tonian systems with many degrees of freedom is given in Chap.3. The authors
discuss various types of fixed and dynamical equilibria and their local stability
properties, and smoothly connect them to the issue of global stability of dynamical
states. Besides discussing standard ways of characterizing chaos via Lyapunov
spectra, the authors also introduce novel methods (called SALI and GALI) which
connect tangent dynamics with stability of motion and the nature of the dynamical
state under investigation. Both aspects of characterizing equilibria and exploring
techniques to distinguish order from chaos are discussed in detail in the two
subsequent chapters.

Then comes Chap. 6, where we encounter many applications of the methods
introduced earlier to the classical problem of the FPU paradox, first posed by Enrico
Fermi, John Pasta, and Stanislav Ulam in their pioneering studies of the early 1950s.
The next chapter addresses the fascinating phenomenon of localization and reports
on another recent puzzle of great interest at the border between order and chaos,
namely, the spreading of nonlinear waves in ordered and disordered media.

The monograph continues in Chap. 8 with a critical discussion and comparison
of many systems exhibiting “weak chaos” from the viewpoint of nonextensive
statistical mechanics. Finally, the book ends in Chap.9 with a number of open
problems, which should prove quite inspiring to graduate student readers, and
concludes with a brief review of additional fascinating topics of Hamiltonian
dynamics, which are of great current interest and outstanding potential for practical
applications.

In summary, this book constitutes in my opinion a very solid piece of work,
which serves several purposes: It is very useful as an introductory textbook that
familiarizes the reader with modern methods of analysis applied to Hamiltonian
systems of many degrees of freedom and reviews a set of modern research areas
at the forefront of nonlinear science. Last but not least, thanks to its pedagogical
structure, it should prove easily exploitable as an exercise source for advanced
university courses.

Dresden, Germany Sergej Flach



Preface

The main purpose of this book is to present and discuss, in an introductory and
pedagogical way, a number of important recent developments in the dynamics
of Hamiltonian systems of N degrees of freedom. This is a subject with a long
and glorious history, which continues to be actively studied due to its many
applications in a wide variety of scientific fields, the most important of them
being classical mechanics, astronomy, optics, electromagnetism, solid state physics,
quantum mechanics, and statistical mechanics.

One could, of course, immediately point out the absence of biology, chemistry, or
engineering from this list. And yet, even in such diverse areas, when the oscillations
of mutually interacting elements arise, a Hamiltonian formulation can prove
especially useful, as long as dissipation phenomena can be considered negligible.
This situation occurs, for example, in weakly oscillating mechanical structures, low-
resistance electrical circuits, energy transport processes in macromolecular models
of motor proteins, or vibrating DNA double helical structures.

Let us briefly review some basic facts about Hamiltonian dynamics, before
proceeding to describe the contents of this book.

The fundamental property of Hamiltonian systems is that they are derived from
Hamilton’s Principle of Least Action and are intimately related to the conservation
of book, under time evolution in the phase space of their position and momentum
variables gi, pr, k = 1,2,..., N, defined in the Euclidean phase space R2N | Their
associated system of (first-order) differential equations of motion is obtained from a
Hamiltonian function H, which depends on the phase space variables and perhaps
also time. If H is explicitly time-independent, it represents a first integral of the
motion expressing the conservation of total energy of the Hamiltonian system. The
dynamics of this system is completely described by the solutions (trajectories or
orbits) of Hamilton’s equations, which lie on a (2N — 1)-dimensional manifold, the
so-called energy surface, H(q1,...,qn, P1,---,PN) = E.

This constant energy manifold can be compact or not. If it is not, some orbits may
escape to infinity, thus providing a suitable framework for studying many problems
of interest to the dynamics of scattering phenomena. In the present book, however,
we shall be exclusively concerned with the case where the constant energy manifold
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X Preface

is compact. In this situation, the well-known theorems of Liouville-Arnol’d (LA)
and Kolmogorov-Arnol’d-Moser (KAM) rigorously establish the following two
important facts [19].

The LA theorem: If N — 1 global, analytic, single-valued integrals exist (besides
the Hamiltonian) that are functionally independent and in involution (the Poisson
bracket of any two of them vanishes), the system is called completely integrable,
as its equations can in principle be integrated by quadratures to a single integral
equation expressing the solution curves. Moreover, these curves generally lie
on N -dimensional tori and are either periodic or quasiperiodic functions of N
incommensurate frequencies.

The KAM theorem: If H can be written in the form H = H, + ¢H; of an
¢ perturbation of a completely integrable Hamiltonian system Hj, most (in the
sense of positive measure) quasiperiodic tori persist for sufficiently small ¢. This
establishes the fact that many near-integrable Hamiltonian systems (like the solar
system for example!) are “globally stable” in the sense that most of their solutions
around an isolated stable-elliptic equilibrium point or periodic orbit are “regular” or
“predictable.”

And what about Hamiltonian systems which are far from integrable? As has
been rigorously established and numerically amply documented, they possess near
their unstable equilibria and periodic orbits dense sets of solutions which are called
chaotic, as they are characterized by an extremely sensitive dependence on initial
conditions known as chaos. These chaotic solutions also exist in generic near-
integrable Hamiltonian systems down to arbitrarily small values of ¢ — 0 and
form a network of regions on the energy surface, whose size generally grows with
increasing |g|.

In the last four decades, since KAM theory and its implications became widely
known, Hamiltonian systems have been studied exhaustively, especially in the
cases of N = 2 and N = 3 degrees of freedom. A wide variety of powerful
analytical and numerical tools have been developed to (1) verify whether a given
Hamiltonian system is integrable; (2) examine whether a specific initial state leads
to a periodic, quasiperiodic, or chaotic orbit; (3) estimate the “size” of regular
domains of predominantly quasiperiodic motion; and (4) analyze mathematically
the “boundary” of these regular domains, beyond which large-scale chaotic regions
dominate the dynamics and most solutions exhibit in the course of time statistical
properties that prevail over their deterministic character.

As it often happens, however, physicists are more daring than mathematicians.
Impatient with the slow progress of rigorous analysis and inspired by the pioneering
numerical experiments of Fermi, Pasta, and Ulam (FPU) in the 1950s, a number
of statistical mechanics experts embarked on a wonderful journey in the field of
N > 1 coupled nonlinear oscillator chains and lattices and discovered a goldmine.
Much to the surprise of their more traditional colleagues, they discovered a wealth
of extremely interesting results and opened up a path that is most vigorously pursued
to this very day. They concentrated especially on one-dimensional FPU lattices (or
chains) of N classical particles and sought to uncover their transport properties,
especially in the N — oo and ¢ — oo limits.
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They were joined in their efforts by a new generation of mathematical physicists
aiming ultimately to establish the validity of Fourier’s law of heat conduction,
unravel the mysteries of localized oscillations, understand energy transport, and
explore the statistical properties of these Hamiltonian systems at far from equilib-
rium situations. They often set all parameters equal, but also seriously pondered
the effect of disorder and its connections with nonlinearity. Although most results
obtained to date concern (d = 1)-dimensional chains, a number of findings have
been extended to the case of higher (d > 1)-dimensional lattices.

Throughout these studies, regular motion has been associated with quasiperiodic
orbits on N -dimensional tori and chaos has been connected to Lyapunov exponents,
the maximal of which is expected to converge to a finite positive value in the long
time limit 1 — oo. Recently, however, this “duality” has been challenged by a
number of results regarding longtime Hamiltonian dynamics, which reveal (a) the
role of tori with a dimension as low as d = 2,3, ... onthe 2N — 1 energy surface
and (b) the significance of regimes of “weak chaos,” near the boundaries of regular
regions. These phenomena lead to the emergence of a hierarchy of structures, which
form what we call quasi-stationary states, and give rise to particularly long-lived
regular or chaotic phenomena that manifest a deeper level of complexity with far-
reaching physical consequences.

It is the purpose of this book to discuss these phenomena within the context of
what we call complex Hamiltonian dynamics. In the chapters that follow, we intend
to summarize many years of research and discuss a number of recent results within
the framework of what is already known about N degrees of freedom Hamiltonian
systems. We intend to make the presentation self-contained and introductory enough
to be accessible to a wide range of scientists, young and old, who possess some basic
knowledge of mathematical physics.

We do not intend to focus on traditional topics of Hamiltonian dynamics, such
as their symplectic formalism, bifurcation properties, renormalization theory, or
chaotic transport in homoclinic tangles, which have already been expertly reviewed
in many other textbooks. Rather, we plan to focus on the progress of the last
decade on one-dimensional Hamiltonian lattices, which has yielded, in our opinion,
a multitude of inspiring discoveries and new insights, begging to be investigated
further in the years to come.

More specifically, we propose to present in Chap. 1 some fundamental back-
ground material on Hamiltonian systems that would help the uninitiated reader
build some basic knowledge on what the rest of the book is all about. As part
of this introductory material, we mention the pioneering results of A. Lyapunov
and H. Poincaré regarding local and global stability of the solutions of Hamiltonian
systems. We then consider in Chap.2 some illustrative examples of Hamiltonian
systems of N = 1 and 2 degrees of freedom and discuss the concept of integrability
and the departure from it using singularity analysis in complex time and perturbation
theory. In particular, the occurrence of chaos in such systems as a result of
intersections of invariant manifolds of saddle points will be examined in some detail.

In Chap. 3, we present in an elementary way the mathematical concepts and basic
ingredients of equilibrium points, periodic orbits, and their local stability analysis
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for arbitrary N. We describe the method of Lyapunov exponents and examine their
usefulness in estimating the Kolmogorov entropy of certain physically important
Hamiltonian systems in the thermodynamic limit, that is, taking the total energy E
and the number of particles N very large with £/N = constant. Moreover, we
introduce some alternative methods for distinguishing order from chaos based on
the more recently developed approach of Generalized Alignment Indices (GALIs)
described in detail in Chap. 5.

Chapter 4 introduces the fundamental notions of nonlinear normal modes
(NNMs), resonances, and their implications for global stability of motion in
Hamiltonian systems with a finite number of degrees of freedom N. In particular,
we examine the importance of discrete symmetries and the usefulness of group
theory in analyzing periodic and quasiperiodic motion in Hamiltonian systems with
periodic boundary conditions. Next, we discuss in Chap.5 a number of analytical
and numerical results concerning the GALI method (and its ancestor the Smaller
Alignment Index—SALI—method), which uses properties of wedge products of
deviation vectors and exploits the tangent dynamics to provide indicators of stable
and chaotic motion that are more accurate and efficient than those proposed by
other approaches. All this is then applied in Chap.6 to explain the paradox of
FPU recurrences and the associated transition from “weak” to “strong” chaos. We
introduce the notion of energy localization in normal mode space and discuss the
existence and stability of low-dimensional “g-tori,” aiming to provide a more com-
plete interpretation of FPU recurrences and their connection to energy equipartition
in FPU models of particle chains.

In Chap.7 we proceed to discuss the phenomenon of localized oscillations
in the configuration space of nonlinear one-dimensional lattices with N — oo,
concentrating first on the so-called periodic (or translationally invariant) case where
all parameters in the on-site and interaction potentials are identical. We also mention
in this chapter recent results regarding the effects of delocalization and diffusion
due to disorder introduced by choosing some of the parameters (masses or spring
constants) randomly at the initialization of the system.

Next, in Chap. 8 we examine the statistical properties of chaotic regions in cases
where the orbits exhibit “weak chaos,” for example, near the boundaries of islands
of regular motion where the positive Lyapunov exponents are relatively small.
We demonstrate that “stickiness” phenomena are particularly important in these
regimes, while probability density functions (pdfs) of sums of orbital components
(treated as random variables in the sense of the Central Limit Theorem) are well
approximated by functions that are far from Gaussian! In fact, these pdfs closely
resemble g-Gaussian distributions resulting from minimizing Tsallis’ g-entropy
(subject to certain constraints) rather than the classical Boltzmann Gibbs (BG)
entropy and are related to what has been called nonextensive statistical mechanics
of strongly correlated dynamical processes.

In this context, we discuss chaotic orbits close to unstable NNMs of multidimen-
sional Hamiltonian systems and show that they give rise to certain very interesting
quasi-stationary states, which last for very long times and whose pdfs (of the above
type) are well fitted by functions of the g-Gaussian type. Of course, in most cases, as
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t continues to grow, these pdfs are expected to converge to a Gaussian distribution
(g — 1), as chaotic orbits exit from weakly chaotic regimes into domains of
strong chaos, where the positive Lyapunov exponents are large and BG statistics
prevail. Still, we suggest that the complex statistics of these states need to be
explored further, particularly with regard to the onset of energy equipartition, as
their occurrence is far from exceptional and their long-lived nature implies that they
may be physically important in unveiling some of the mysteries of Hamiltonian
systems in many dimensions.

The book ends with Chap. 9 containing our conclusions, a list of open research
problems, and a discussion of future prospects in a number of areas of Hamiltonian
dynamics. Moreover, at the end of every chapter we have included a number of
exercises and problems aimed at training the uninitiated reader to learn how to use
some of the fundamental concepts and techniques described in this book. Some of
the problems are intended as projects for ambitious postgraduate students and offer
suggestions that may lead to new discoveries in the field of complex Hamiltonian
dynamics in the years ahead.

In the Acknowledgments that follow this Preface, we express our gratitude to a
number of junior and senior scientists, who have contributed to the present book in
many ways: Some have provided useful comments and suggestions on many topics
treated in the book, while others have actively collaborated with us in obtaining
many of the results presented here.

Whether we have done justice to all those whose work is mentioned in the text
and listed in our References is not for us to judge. The fact remains that, beyond the
help we have received from all acknowledged scientists and referenced sources, the
responsibility for the accurate presentation and discussion of the scientific field of
complex Hamiltonian dynamics lies entirely with the authors.

Patras, Greece Tassos Bountis
Dresden, Germany Haris Skokos
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Acronyms

BEC

BG

CLT

CPU

DNLS

DDNLS

dof

FPU

FPU—«

FPU-f

Bose Einstein Condensation: Important physical phenomenon related to
the behavior of bosons at very low temperatures.

Boltzmann Gibbs: Ensembles of classical equilibrium statistical
mechanics proposed by Boltzmann and Gibbs in the late nineteenth
and early twentieth centuries.

Central Limit Theorem: The classical theorem, according to which sums
of N identically and independently distributed random variables tend, in
the limit N — oo, to a Gaussian distribution with the same mean and
variance as the original variables.

Central Processing Unit: The part of a computer system that performs
the basic arithmetical, logical, and input/output operations required by
a computer program. The time required by the CPU for the completion
of the tasks of a particular computer program (CPU time) is used to
characterize the efficiency of the program.

Discrete Nonlinear Schrodinger Equation: The Hamiltonian system of
equations emanating from the NLS by the discretization of its second
derivative with respect to the space variable.

Disordered Discrete Nonlinear Schrodinger Equation: The DNLS when
some of its parameters are chosen randomly and uniformly from within
a specified interval.

Degree(s) of freedom: The number of canonical conjugate pairs of
position and momentum variables characterizing a Hamiltonian system.
Fermi, Pasta and Ulam: Names of the researchers who first integrated
numerically a chain (one-dimensional lattice) of identical oscillators
coupled by quadratic as well as cubic and/or quartic nearest neighbor
interaction terms in their Hamiltonian.

FPU lattice whose interaction terms in the Hamiltonian, beyond the
harmonic ones, are only of the cubic type.

FPU lattice whose interaction terms in the Hamiltonian, beyond the
harmonic ones, are only of the quartic type.

XX1



Xxii

GALI

IPM

KAM

KdVv

KG

LA

LCE(s)

MLE
NLS

NNM(s)

NME(s)

ODE(s)

OPM

PDE(s)

pdf(s)

PSS

Acronyms

Generalized Alignment Index of order k > 2: Chaos indicator related
to the book of the parallelepiped formed by k deviation vectors in the
tangent space of an orbit of a dynamical system.

In Phase Mode: A particular NNM of one-dimensional lattices, where
all particles oscillate identically and in phase.

Kolmogorov Arnol’d Moser: Name of a theorem that establishes an
important rigorous result regarding the behavior of weakly perturbed
integrable Hamiltonian systems.

Korteweg de Vries: Name of an equation exhibiting solitary wave
solutions first obtained by Korteweg and de Vries in the 1890s. In the
1960s these waves were named solitons and formed an integral part of
the theory of completely integrable evolution equations.

Klein Gordon: It refers to the so-called Klein Gordon potential of
classical and quantum physics, which consists of a quadratic and a
quartic part.

Liouville Arnol’d: Name of a theorem that establishes an important
rigorous result regarding the solvability of integrable Hamiltonian sys-
tems of N dof and the existence of N -dimensional tori on which their
bounded solutions lie.

Lyapunov Characteristic Exponent(s): Exponents characterizing the
rates of divergence of nearby trajectories of dynamical systems in phase
space.

Maximum Lyapunov Exponent: The LCE with the maximal value.
Nonlinear Schrédinger Equation: A completely integrable PDE which
consists of the linear Schrédinger equation plus a cubic nonlinearity and
is of particular importance in the field of nonlinear optics.

Nonlinear Normal Mode(s): Extension of the normal modes of a linear
system of coupled harmonic oscillators in the nonlinear regime.

Normal Mode Eigenvector(s): Eigenvector(s) of a linear problem, used
as a basis for the expansion of the solutions of the associated perturbed
nonlinear problem.

Ordinary Differential Equation(s): Differential equations involving
derivatives with respect to only one independent variable.

Out of Phase Mode: A particular NNM of one-dimensional lattices,
where all particles oscillate identically out of phase with respect to each
other in all neighboring pairs.

Partial Differential Equation(s): Differential equations involving deriva-
tives with respect to more than one independent variable.

Probability distribution function(s): Function(s) representing the prob-
ability density of observables related to the long time evolution of
variables of a dynamical system in chaotic regimes.

Poincaré Surface of Section: Cross-section of orbits of a Hamiltonian
system with certain lower dimensional subspace of its phase space. For
example, in the case of a two dof Hamiltonian system the PSS is a
two-dimensional plane defined by one pair of position and momentum



Acronyms

QSS

SALI

SPO(s)

XXiii

coordinates, say (x, py), at times when the second position coordinate
has a prescribed value, say y = 0, and the second momentum a
prescribed sign, say p, > 0.

Quasi-stationary states: Weakly chaotic dynamical states of Hamiltonian
systems that persist for very long times and are generally characterized
by pdfs that are different from Gaussian.

Smaller Alignment Index: Chaos indicator related to the area of a
parallelogram formed by two deviation vectors in the tangent space of
an orbit of a dynamical system. It is analogous to GALI,.

Simple Periodic Orbit(s): Periodic orbit(s) of a dynamical system return-
ing to their initial state after a single oscillation of its variables.
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